首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   228159篇
  免费   29070篇
  国内免费   25343篇
电工技术   20569篇
技术理论   13篇
综合类   18994篇
化学工业   41772篇
金属工艺   9146篇
机械仪表   13956篇
建筑科学   14748篇
矿业工程   4372篇
能源动力   6920篇
轻工业   16404篇
水利工程   4377篇
石油天然气   6143篇
武器工业   2155篇
无线电   30504篇
一般工业技术   24001篇
冶金工业   6871篇
原子能技术   3552篇
自动化技术   58075篇
  2024年   578篇
  2023年   3518篇
  2022年   5882篇
  2021年   8010篇
  2020年   7577篇
  2019年   6840篇
  2018年   6260篇
  2017年   8377篇
  2016年   9394篇
  2015年   10822篇
  2014年   11497篇
  2013年   14669篇
  2012年   17012篇
  2011年   19095篇
  2010年   14028篇
  2009年   14099篇
  2008年   15274篇
  2007年   17340篇
  2006年   16438篇
  2005年   14238篇
  2004年   12123篇
  2003年   9805篇
  2002年   7630篇
  2001年   5774篇
  2000年   4596篇
  1999年   3827篇
  1998年   2999篇
  1997年   2408篇
  1996年   2095篇
  1995年   1898篇
  1994年   1612篇
  1993年   1263篇
  1992年   1015篇
  1991年   775篇
  1990年   697篇
  1989年   558篇
  1988年   426篇
  1987年   278篇
  1986年   247篇
  1985年   303篇
  1984年   247篇
  1983年   167篇
  1982年   220篇
  1981年   126篇
  1980年   128篇
  1979年   61篇
  1978年   32篇
  1977年   41篇
  1976年   34篇
  1975年   32篇
排序方式: 共有10000条查询结果,搜索用时 22 毫秒
31.
Adult neurogenesis is a highly regulated process during which new neurons are generated from neural stem cells in two discrete regions of the adult brain: the subventricular zone of the lateral ventricle and the subgranular zone of the dentate gyrus in the hippocampus. Defects of adult hippocampal neurogenesis have been linked to cognitive decline and dysfunction during natural aging and in neurodegenerative diseases, as well as psychological stress-induced mood disorders. Understanding the mechanisms and pathways that regulate adult neurogenesis is crucial to improving preventative measures and therapies for these conditions. Accumulating evidence shows that mitochondria directly regulate various steps and phases of adult neurogenesis. This review summarizes recent findings on how mitochondrial metabolism, dynamics, and reactive oxygen species control several aspects of adult neural stem cell function and their differentiation to newborn neurons. It also discusses the importance of autophagy for adult neurogenesis, and how mitochondrial and autophagic dysfunction may contribute to cognitive defects and stress-induced mood disorders by compromising adult neurogenesis. Finally, I suggest possible ways to target mitochondrial function as a strategy for stem cell-based interventions and treatments for cognitive and mood disorders.  相似文献   
32.
Multicolor upconversion luminescence materials show significantly applications in materials science. In this paper, the novel Yb3+-sensitized Na3La(VO4)2 upconversion luminescence crystals are synthesized by the solid-state reaction method. Three primary colors upconversion luminescence are successfully achieved in Na3La(VO4)2:Yb3+,Tm3+, Na3La(VO4)2:Yb3+,Er3+, and Na3La(VO4)2:Yb3+,Ho3+ crystals excited by the single 980 nm LD. Multicolor upconversion luminescence can be obtained by simply adjusting the combination ratios of these three samples. Luminescence mechanisms of the Yb3+-sensitized system are discussed in detail. In the Na3La(VO4)2 host material, the Yb3+/Ho3+ codoped system exhibits unusual red upconversion luminescence based on the short decay time of Ho3+ ion 5I6 level, which provides the possibility of three primary color luminescence under 980 nm excitation.  相似文献   
33.
34.
ZnO rice like nonarchitects are grafted on the graphene carbon core via a rapid microwave synthesis route. The prepared grafted systems are characterized via XRD, SEM, RAMAN, and XPS to examined the structural and morphological parameters. Zinc oxide grafted graphene sheets (ZnO-G) are further doped in β-phase of polyvinylidene fluoride (PVDF) to prepare the polymer nanocomposites (PNCs) via mixed solvent approach (THF/DMF). β-phase confirmation of PVDF PNCs is done by FTIR studies. It is observed that ZnO-G filler enhances the β-phase content in the PNCs. Non-doped PVDF and PNCs are further studied for rheological behavior under the shear rate of 1–100 s−1. Doping of ZnO-G dopant to the PVDF matrix changes its discontinuous shear thickening (DST) behavior to continues shear thickening behavior (CST). Hydrocluster formation and their interaction with the dopant could be the reason for this striking DST to CST behavioral change. Strain amplitude sweep (10−3% -10%) oscillatory test reveals that the PNCs shows extended linear viscoelastic region with high elastic modulus and lower viscous modulus. Effective shear thickening behavior and strong elastic strength of these PNCs present their candidature for various fields including mechanical and soft body armor applications.  相似文献   
35.
5-Hydroxymethylcytosine (5hmC) is a functionally active epigenetic modification. We analyzed whether changes in DNA 5-hydroxymethylation are an element of age-related epigenetic drift. We tested primary fibroblast cultures originating from individuals aged 22–35 years and 74–94 years. Global quantities of methylation-related DNA modifications were estimated by the dot blot and colorimetric methods. Regions of the genome differentially hydroxymethylated with age (DHMRs) were identified by hMeDIP-seq and the MEDIPS and DiffBind algorithms. Global levels of DNA modifications were not associated with age. We identified numerous DHMRs that were enriched within introns and intergenic regions and most commonly associated with the H3K4me1 histone mark, promoter-flanking regions, and CCCTC-binding factor (CTCF) binding sites. However, only seven DHMRs were identified by both algorithms and all of their settings. Among them, hypo-hydroxymethylated DHMR in the intron of Rab Escort Protein 1 (CHM) coexisted with increased expression in old cells, while increased 5-hydroxymethylation in the bodies of Arginine and Serine Rich Protein 1 (RSRP1) and Mitochondrial Poly(A) Polymerase (MTPAP) did not change their expression. These age-related differences were not associated with changes in the expression of any of the ten-eleven translocation (TET) enzymes or their activity. In conclusion, the distribution of 5hmC in DNA of in vivo aged human fibroblasts underwent age-associated modifications. The identified DHMRs are, likely, marker changes.  相似文献   
36.
The study aimed to prepare sustainable and degradable elastic blends of epoxidized natural rubber (ENR) with poly(lactic acid) (PLA) that were reinforced with flax fiber (FF) and montmorillonite (MMT), simultaneously filling the gap in the literature regarding the PLA-containing polymer blends filled with natural additives. The performed study reveals that FF incorporation into ENR/PLA blend may cause a significant improvement in tensile strength from (10 ± 1) MPa for the reference material to (19 ± 2) MPa for the fibers-filled blend. Additionally, it was found that MMT employment in the role of the filler might contribute to ENR/PLA plasticization and considerably promote the blend elongation up to 600%. This proves the successful creation of the unique and eco-friendly PLA-containing polymer blend exhibiting high elasticity. Moreover, thanks to the performed accelerated thermo-oxidative and ultraviolet (UV) aging, it was established that MMT incorporation may delay the degradation of ENR/PLA blends under the abovementioned conditions. Additionally, mold tests revealed that plant-derived fiber addition might highly enhance the ENR/PLA blend’s biodeterioration potential enabling faster and more efficient growth of microorganisms. Therefore, materials presented in this research may become competitive and eco-friendly alternatives to commonly utilized petro-based polymeric products.  相似文献   
37.
The corrosion behaviour of Mg-6Gd-3Y-1Zn-0.3Ag (wt.%) alloy components with different sizes after cooling was investigated. The alloys in the small components (SC) cooled fast, which were composed of α-Mg matrix and coarse long-period stacking ordered (LPSO) phases. The alloys in the large components (LC) cooled slowly, and there were thin lamellar LPSO phases precipitating inside the grains, except for α-Mg matrix and coarse LPSO phases. The hydrogen evolution test revealed that the corrosion rate of LC sample was higher than that of SC sample. Electrochemical impedance spectroscopy (EIS) test showed that the surface film on LC alloys provided worse protection. The corrosion morphologies indicated that the precipitation of the thin lamellar LPSO phases in LC sample caused severe micro-galvanic corrosion, which accelerated the rupture of the surface film.  相似文献   
38.
The widespread use of fuel cell technology is hampered by the use of expensive and scarce platinum metal in electrodes which is required to facilitate the sluggish oxygen reduction reaction (ORR). In this work, a viable synthetic approach was developed to prepare iron-based sulfur and nitrogen dual doped porous carbon (Fe@SNDC) for use in ORR. Benzimidazole, a commercially available monomer, was used as a precursor for N doped carbon and calcined with potassium thiocyanate at different temperatures to tune the pore size, nitrogen content and different types of nitrogen functionality such as pyridinic, pyrrolic and graphitic. The Fe@SNDC–950 with high surface area, optimum N content of about 5 at% and high amount of pyridinic and graphitic N displayed an onset potential and half-wave potential of 0.98 and 0.83 V vs RHE, respectively, in 0.1 M KOH solution. The catalyst also exhibits similar oxygen reduction reaction performance compared to Pt/C (20 wt%) in acidic media. Furthermore, when compared to commercially available Pt/C (20 wt%), Fe@SNDC–950 showed enhanced durability over 6 h and poison tolerance in case of methanol crossover with the concentration up to 3.0 M in oxygen saturated alkaline electrolyte. Our study demonstrates that the presence of N and S along with Fe-N moieties synergistically served as ORR active sites while the high surface area with accessible pores allowed for efficient mass transfer and interaction of oxygen molecules to the active sites contributing to the ORR activity of the catalyst.  相似文献   
39.
三维异质异构集成技术是实现电子信息系统向着微型化、高效能、高整合、低功耗及低成本方向发展的最重要方法,也是决定信息化平台中微电子和微纳系统领域未来发展的一项核心高技术。文章详细介绍了毫米波频段三维异质异构集成技术的优势、近年来的发展趋势以及面临的挑战。利用硅基MEMS 光敏复合薄膜多层布线工艺可实现异质芯片的低损耗互连,同时三维集成高性能封装滤波器、高辐射效率封装天线等无源元件,还能很好地处理布线间的电磁兼容和芯片间的屏蔽问题。最后介绍了一款新型毫米波三维异质异构集成雷达及其在远距离生命体征探测方面的应用。  相似文献   
40.
目的 通过对广泛使用的PBAT–PLA生物降解膜袋在受控需氧堆肥条件下的降解机制研究,为生物降解塑料的大规模推广提供重要理论基础。方法 根据GB/T 19277.1—2011,在(58±2)℃需氧条件下,对PBAT–PLA膜袋进行为期160 d的生物降解测试(即工业堆肥),并以常见的可降解材料微晶纤维素作为参比样品。对降解前后的材料进行红外、扫描电镜、能谱分析,并结合其所在堆肥样本的脂肪酶活性,从多角度探寻降解机制。结果 PBAT–PLA膜袋与微晶纤维素所在的堆肥脂肪酶活性都达到空白堆肥的3倍以上。红外显示由微晶纤维素水分子吸附、糖环打开、基团氧化形成的吸收峰加强,PBAT–PLA膜袋中的酯键峰明显减弱;扫描电镜发现降解的PBAT–PLA膜袋表面覆盖了微生物膜;能谱分析发现,碳元素大幅减少,氧元素增加。结论 微生物在PBAT–PLA膜袋表面生长形成生物膜,分泌大量脂肪酶,水解PBAT–PLA的酯键,使聚合物降解为不同链长的中间体或小分子,同时伴随着氧化,随后被作为碳源,在相关微生物体内被代谢利用,形成最终产物。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号